Композиционные материалы

Свойства композиционных материалов

Композиционные материалы представляют собой металлические и неметаллические матрицы (основы) с заданным распределением в них упрочнителей (волокон, дисперсных частиц и др.); при этом композиционные материалы позволяют эффективно использовать индивидуальные свойства составляющих композиции.

По характеру структуры композиционные материалы подразделяются на волокнистые, упрочнённые непрерывными волокнами и нитевидными кристаллами, дисперсноупрочнённые композиционные материалы, полученные путём введения в металлическую матрицу дисперсных частиц упрочнителей, слоистые композиционные материалы, созданные путем прессования или прокатки разнородных материалов. Сплавы с направленной кристаллизацией эвтектических структур также представляют собой композиционные материалы.

Комбинируя объемное содержание компонентов, можно, в зависимости от назначения, получать композиционные материалы с требуемыми значениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиционные материалы с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами. Композиционные материалы своим прообразом имеют широко известный железобетон, представляющий собой сочетание бетона, работающего на сжатие, и стальной арматуры, работающей на растяжение, а также полученные в 19 в. прокаткой слоистые материалы.

Успешному развитию современных композиционных материалов содействовали: разработка и применение в конструкциях волокнистых стеклопластиков, обладающих высокой удельной прочностью (1940-50); открытие весьма высокой прочности, приближающейся к теоретической, нитевидных кристаллов и доказательства возможности использования их для упрочнения металлических и неметаллических материалов (1950-60); разработка новых армирующих материалов — высокопрочных и высокомодульных непрерывных волокон бора, углерода, Al2O3, SiC и волокон других неорганических тугоплавких соединений, а также упрочнителей на основе металлов (1960-70).

Применение композиционных материалов

В технике широкое распространение получили волокнистые композиционные материалы, армированные высокопрочными и высокомодульными непрерывными волокнами, в которых армирующие элементы несут основную нагрузку, тогда как матрица передаёт напряжения волокнам. Волокнистые композиционные материалы, как правило, анизотропны. Механические свойства композиционных материалов определяются не только свойствами самих волокон, но и их ориентацией, объёмным содержанием, способностью матрицы передавать волокнам приложенную нагрузку и др. Диаметр непрерывных волокон углерода, бора, а также тугоплавких соединений (В4С, SiC и др.) обычно составляет 100-150 мкм.

Важнейшими технологическими методами изготовления композиционных материалов являются: пропитка армирующих волокон матричным материалом; формование в пресс-форме лент упрочнителя и матрицы, получаемых намоткой; холодное прессование обоих компонентов с последующим спеканием, электрохимическое нанесение покрытий на волокна с последующим прессованием; осаждение матрицы плазменным напылением на упрочнитель с последующим обжатием; пакетная диффузионная сварка монослойных лент компонентов; совместная прокатка армирующих элементов с матрицей и другие.

Композиционные материалы в конструкциях, требующих наибольшего упрочнения, характеризуются расположением армирующих волокон по направлению приложенной нагрузки. Цилиндрические изделия и другие тела вращения (например, сосуды высокого давления), в основе которых лежат композиционные материалы, армируют волокнами, ориентируя их в продольном и поперечном направлениях. Увеличение прочности и надежности в работе цилиндрических корпусов, а также уменьшение их массы достигается внешним армированием узлов конструкций высокопрочными и высокомодульными волокнами, что позволяет повысить в 1,5-2 раза удельную конструктивную прочность корпусов из композиционных материалов по сравнению с цельнометаллическими корпусами.

Весьма перспективны композиционные материалы, армированные нитевидными кристаллами (усами) керамических, полимерных и др. материалов. Размеры усов обычно составляют от долей до нескольких мкм по диаметру и примерно 10-15 мм по длине.

Разрабатываются композиционные материалы со специальными свойствами, например радиопрозрачные и радиопоглощающие материалы, композиционные материалы для тепловой защиты орбитальных космических аппаратов, композиционные материалы с малым коэффициентом линейного термического расширения и высоким удельным модулем упругости и другие.

Области применения композиционных материалов многочисленны; кроме авиационно-космической, ракетной и других специальных отраслей техники, композиционные материалы могут быть успешно применены в энергетическом турбостроении, в автомобильной промышленности — для деталей двигателей и кузовов автомашин; в машиностроении — для корпусов и деталей машин; в химической промышленности — для автоклавов, цистерн, аппаратов сернокислотного производства, ёмкостей для хранения и перевозки нефтепродуктов и др.

Стеклопластики композиционные материалы, состоящие из стеклянного наполнителя и синтетического полимерного связующего. Наполнителем служат в основном стеклянные волокна в виде нитей, жгутов (ровингов), стеклотканей, стекломатов, рубленых волокон; связующим — полиэфирные смолы, феноло-формальдегидные, эпоксидные, кремнийорганические смолы, полиимиды, алифатические полиамиды, поликарбонаты и др. Для стеклопластиков характерно сочетание высоких прочностных, диэлектрических свойств, сравнительно низкой плотности и теплопроводности, высокой атмосферо-, водо- и химстойкости. Механические свойства стеклопластиков определяются преимущественно характеристиками наполнителя и прочностью связи его со связующим, а температуры переработки и эксплуатации стеклопластика — связующим. Наибольшей прочностью и жёсткостью обладают стеклопластки, содержащие ориентированно расположенные непрерывные волокна. Такие стеклопластки подразделяются на однонаправленные и перекрёстные; у стеклопластика первого типа волокна расположены взаимно параллельно, у стеклопластика второго типа — под заданным углом друг к другу, постоянным или переменным по изделию. Изменяя ориентацию волокон, можно в широких пределах регулировать механические свойства стеклопластиков.

Большей изотропией механических свойств обладают стеклопластки с неориентированным расположением волокон: гранулированные и спутанно-волокнистые пресс-материалы; материалы на основе рубленых волокон, нанесённых на форму методом напыления одновременно со связующим, и на основе холстов (матов). Стеклопластки на основе полиэфирных смол можно эксплуатировать до 60-150 С, эпоксидных — до 80-200 C, феноло-формальдегидных — до 150-250 С, полиимидов — до 200-400 С. Диэлектрическая проницаемость стеклопластиков 4-14, тангенс угла диэлектрических потерь 0,01-0,05, причём при нагревании до 350-400 С показатели более стабильны для стеклопластиков на основе кремнийорганических и полиимидных связующих.

Изделия из стеклопластиков с ориентированным расположением волокон изготавливают методами намотки, послойной выкладки или протяжки с последующим автоклавным, вакуумным или контактным формованием либо прессованием, из пресс-материалов — прессованием и литьём.

Стеклопластики применяют как конструкционный и теплозащитный материал при производстве корпусов лодок, катеров, судов и ракетных двигателей, кузовов автомобилей, цистерн, рефрижераторов, радиопрозрачных обтекателей, лопастей вертолётов, коррозионностойкого оборудования и трубопроводов, небольших зданий, бассейнов для плавания и др., а также стеклопластик используется как электроизоляционный материал в электро- и радиотехнике.

Бассейны и купели из композитных материалов отличаются безупречным качеством и лаконичным дизайном, сочетающим высококачественные натуральные и современные материалы. Используемые материалы обеспечивают изделию очень высокую устойчивостью к воздействию окружающей среды и простоту в обслуживании.

Лит.: Волокнистые композиционные материалы, пер. с англ., М., 1967: Современные композиционные материалы, под ред. П. Крока и Л. Броутмана, пер. с англ., М., 1970; Туманов А. Т., Портной К. И., «Докл. АН СССР», 1971, т. 197, ? 1, с. 75; 1972, т. 205, ?2, с. 336; их же, «Металловедение и термическая обработка металлов», 1972, ? 4, с. 24. А. Т. Туманов, К. И. Портной.

Форма обратной связи

Чешский павильон для бассейна “SPA DOME ORLANDO”